GENERAL SYNTHESIS OF NOVEL CHIRAL RUTHENIUM CATALYSTS AND THEIR USE IN ASYMMETRIC HYDROGENATION

J. P. GENET^{*5}, S. MALLART⁵, C. PINEL⁵, S. JUGE[§] and J. A. LAFFITTE^{§§}

fi Laboratoire de Synthese Organique, Associ6 au C.N.R.S., Ecole Nationale Sup6rieure de Chimie de Paris 11 rue P. et M. Curie, 75231 Paris Cedex 05, FRANCE \$8 Département Chimie Fine et Bioconversions, G.R.L.(Elf Aquitaine) 64170 Lacq, FRANCE

(Received 6 December 1990)

Abstract : **The first general synthesis of mononuclear hexacoordinate chiral rutheniumcomplexes is presented. Four chiral ruthenium(II)(2-methylallyl)2 complexes containing Diop, Chiraphos, Norphos, and Binap were prepared in** *50-71%* **yield under mild conditions, and were found to be effective for asymmetric hydrogenation of unsaturated carboxylic acids to give the corresponding saturated derivatives attaining 90% optical purity.**

During the past twenty years asymmetric synthesis using homogeneous catalysis has become a powerful tool in organic chemistry. Catalytic asymmetric hydrogenation by means of a large variety of rhodium complexes with chiral ligands such as Diop, Bppm, Chiraphos, etc, has been extensively used to achieve high enantioselectivity.¹ In contrast, there are relatively few reports on corresponding ruthenium complexes.² Some cluster ruthenium complexes of Diop are known and are effective as catalysts for asymmetric hydrogenation under quite drastic conditions.^{2e} With the advent of the first ruthenium Binap complexes 1 described by Ikariya,3 the situation changed, and outstanding performance of various Binap-ruthenium complexes $2.3⁴$ have been described by Noyori and Saburi for reduction of carbon-carbon double-bonds^{3,5} and carbonyl groups.⁶ However, the synthesis of ruthenium mononuclear catalyst from polymeric(RuCl2(COD))_n as starting material requires the presence of triethylamine and is executed in toluene at reflux,3.4 to cleave the halogeno- bridged structure. The development of ruthenium-chemistry for homogeneous asymmetric synthesis requites mild and reliable synthesis of chiral ruthenium catalysts.

In this note we wish to report a convenient and general synthetic method for the preparation of new family of chiral **bidentate** phosphine ruthenium bis-ally1 complexes of type 4 which were also found to catalyze asymmetric hydrogenation of olefins.

RuaCl, **(-)BINAPs, NEQ 1 (BINAP)RuXI p: x = Cl, Br, I a : X = OAc**

Allylic Grignard reagents are known to react with polymeric, halogeno-bridged complexes such as $(RuX2diene)$ _n with formation of mononuclear ruthenium complexes of type $(RuAll2diene)$ (All = Allyl or 2methylallyl).⁸ We found that Ru(2-methylallyl)₂COD 5 was an excellent starting material for a facile synthesis **of a wide range of bidentate chiral phosphine complexes 3.9 These complexes can be prepared by simple** displacement of 1,5-cyclooctadiene (COD) of 5 by the appropriate chiral ligand as shown in Table I. These **catalysts are also convenient precursors for the preparation of the corresponding chiral ruthenium acetate and** bromide complexes.¹⁰

Table I : Preparation of catalysts (4a-4d) by displacement of cyclooctadiene

(S)+)BlNAP

a) Under argon a mixture of CODRu(methylallyl)? (0.1g, 0.314 mmol) and the appropriate chiral ligand (1 equivalent) in degassed *hexane (2 mL) was heated at 50-60°C for 5 h. The resulting colored crystalline complex (4a-4c) was collected by filtration,* $washed with hexane(2mL)$ and the powder was dried in vacuo.

b) (-) Binap was heated with 2 mL of hexane-toluene mixture (5/3). After 8h at 60-70°C, the clear solution was evaporated under reduced pressure, and the resulting solid was washed with hexane (2 ml) and dried in vacuo.

Ruthenium catalysts

These new chiral ruthenium complexes were found to catalyze hydrogenation, and in this preliminary study tiglic acid 6 was hydrogenated in quantitative yield into saturated acid. The results are summarized in Table II.

Entry	Ligand	Press (am)	Temp. (°C)	Yield ^b (%)	ee^c	conf.
1	$(-)$ -Diop	50	20	100	46	$\bf R$
$\mathbf{2}$	$(-)$ -Diop	15	20	100	46	$\mathbf R$
3	$(-)$ -Diop	3	20	100	51	$\mathbf R$
4	$(-)$ -Diop	50	$0 - 5$	100	51	R
5	$(-)$ -Diop	15	50	100	38	$\mathbf R$
6	(-)-Chiraphos	15	20	100	30	S
$\overline{7}$	(+)-Norphos	3	20	100	4	S
8	$(+)$ -Binap	3	20	100	90	R

Table **II** : Hydrogenation of Tiglic Acid (6).^a

a) Reaction was executed with stirrring in a stainless steel autoclave in methanol solution (2-3 ml) of the substrate (1 mmol) with *exclusion of air during 24-60 h. b) Determined by ¹H NMR. c) ee were determined by H.P.L.C. analysis of the amide prepared by condensation of R-1-(I-naphthylethylamine) and the saturated acid.*

A systematic study revealed that the **degree of enantioselection is only slightly dependant** upon hydrogen pressure. The reaction of &_in methanol using **Ru-Diop as a** catalyst at initial hydrogen pressure of 50,15 and 3 atm. gave the saturated acid in 46 and 51% ee respectively (entries l-3). The level of asymmetric induction increased by decreasing reaction temperature. Thus using Ru-Diop as a catalyst the reduction of tiglic acid 6 gave an enantiomeric excess reaching 51% at 0-5°C under 50 atm but only 46% at 20°C. (compare entries 1 **and 4).**

The present study reveals a direct comparison in the efficiency of different optically active chelating biphosphanes ruthenium-ally1 hexacoordinate complexes. These complexes are slightly more efficient (2-3 atm.) than the corresponding Ru(II)-acetate.

 $Ru(II)$ -Norphos gave poor enantioselectivity (4% : entry 7), with Ru-Chiraphos the formation of saturated acid is observed with 30% ee (entry 6). The ruthenium complex 4a possessing Diop ligand proved to be efficient and rather high enantiomeric excess **up to** 51% ee is obtained (entry 4), when tiglic acid is the substrate. Noteworthy with the Ru(II)-(2-methylallyl)₂ complex bearing Binap ligand a very high enantioselectivity is observed up to 90% ee (entry 8).

In conclusion, new chiral Ru(II) complexes with ally1 ligand are easy prepared. These complexes have good activity (2-3 atm) as catalysts for asymmetric hydrogenation with high enantioface discriminating activity (up to 90%).

Out of this work, a systematic study is now possible with ruthenium complexes bearing a **large variety** of **chiral ligands as in the case of rhodium and iridium, which is under active investigation in this laboratory.**

J. **P. GENW et** *al.*

References and Notes

1) a) H. B. Kagan. Compreknsive *Organomtallic Ckmistry, G. Winson. Ed., Pergamon FESS, Oxford.* **1982. Vol 8. Chap 53** ; **b)** *Asymmetric Syntksis,* **J.D. Morrisson. Ed., Academic Press, New York, 1985. Vol 5 ; c) B. Bosnich. Asymwtetric** *Catalysis, NATO* **AST Series E. Martinus Nijhoft Publiihers Dordrecht. 1986, 103** ; **d) J. W. Apsimon and T. L. Collier, Tetrahedron, 1986,42.5157** *; e)* **V. Coplar. G. Comisso and V Sunfic. Syntksis, 1981.85** ; Q J. M. **Brown, Angew. Ckm. Int.** *Ed.,* **1987.2, 190-203** ; g) **H. Bnmner, Topics in Stereockmistry** , **E. L. Eliel, S. H. Wilen, Ed., John Wiley & Sons, New York. 1988. Vol 18.129-247.**

2) a) B. R. James, A. Pacheco, S. J. Rettig, I. S. Thorburn, R.G. Ball and J. A. Ibers, *J. Mol. Catal.*, 1987, 41, 147-161 ; b) U. Matteoli, G. Menchi, P. Frediani, M. Bianchi and F. Piacenti, J. Organomet. Chem., 1985, 285, 281-292 ; c) C. Botteghi, S. Gladiali, M. Bianchi, U Matteoli, P. Frediani, P. G. Vergamini and E. Benedetti, J. Organomet. Chem., 1977, 140, 221-228 ; d) G. F. Schmidt and G. Süss-Fink, J. Organomet. Chem., 1989, 362, 179-186 ; e) Review : U Matteoli, P. Frediani, M. Bianchi, C. Botteghi and S. Gladiali, *J. Mol. Catal.*, 1981, 12, 265-319 ; f) B. R. James and D. K. W. Wang, Can. J. Chem., 1980, 58. **245-250**

3) T. Ikariya, Y. Ischii, H. Kawano, T. Arai, M. Saburi, S. Yoshikawa and S. Akutagawa, J. Chem. Soc., Chem. Comm., **1985, 922-924.**

4) a) T. Ohta, H. Takaya and R. Noyori, *Inorg. Chem.*, **1988.** 27, 566-569 ; b) K. Mashima, K. H. Kusano. T. Ohta, R. Novori and H. Takaya, J. Chem. Soc., Chem. Comm., 1989, 1208-1210.

5) For some leading references related to this excellent technology see : **a) Reviews** : **R. Noyori and M. Kimmum in Modern** $Synthetic Methods, R. Scheffold, Ed., Spinger Verlag, 1989, 128 ; R. Noyori, Chem. Soc. Review, 1989, 128, 209-224 ; b) H.$ **Takaya. T. Ohta. N. Sayo, H. Kumobayashi, S. Akutagawa. S. I. Inoue, I. Kasahara and R. Noyori. /. Am.** *Ckm. SOC.,* **1987,** 109, 1596-1597 ; c) M. Kitamura, I. Kasahara, K. Manabe, R. Noyori and H.Takaya, J. Org. Chem., 1988, 53, 708-710 ; d) R. Noyori, T. Okhuma, M. Kitamura, H. Takaya, N. Sayo, H. Kumobayashi and S. Akutagawa, J. Am. Chem. Soc., 1987, 102, *5856-5858 ; e)* **H.** KWZUIO. *Y. I&ii.* **T. Ikariya, M. Sabmi, S. Yoshikawa, Y. Uchida and H. Kumobayashi.** *Tetrukdron* Lat., 1987, 28, 1905-1908 ; f) H. Kawano, T. Ikariya, Y. Ishii, M. Saburi, S. Yoshikawa, Y. Uchida and H. Kumobayashi, J. Chem. *Sot. Perkin trans I, 1989.* **1571-1575.**

6) a) M. Kitamura, T. Okhuma, H. Takaya and R. Noyori, Tetrahedron Lett., 1988, 29, 1555-1556 ; b) see ref 5d ; c) H. Kawano, Y. Ishii, M. Saburi, Y. Uchida, J. Chem. Soc., Chem. Comm., 1988, 87-88 ; d) see ref 2e.

7) These complexes are readily available from RuCl3, 3H₂O and cyclooctadiene according to E. W. Abel, M. A. Bennett, and G. Wilkinson, *J. Chem. Soc.*, 1959, 3178-3182 and J. Müller and E. O. Fisher, *J. Organomet. Chem.*, 1966, 5, 275-282.

8) a) J. Powell and B. L. Shaw. J. Ckm. Sot. *(A).* **1968. 159-161** ; **b) R. R. S&rock, B. F. G. Johnson, I. Lewis, J.** *Ckm. SOL, Dalr. Trans.,* **1974, 951-959.**

9) J. P. Genet, S. Jugé, S. Mallart, International Patent, 89 11159 (1989), Fr-90 00607. Taken in part from "Thèse de l'Université Pierre et Marie Curie, S. Mallart, 20 décembre 1989.

10) To our knowledge few racemic monodentate ruthenium(Allyl)₂ complexes (e. g. triphenylphosphines and trialkylphosphites) have been described, see ret 8a and M. Cooke, R. J. Goodtellow, M. Green and G. Parker, J. Chem. Soc.(A), 1971, 16-20. This
methodology has already been extended to 12 other chiral ligands / S. Mallart, C. Pinel, unpublish **11)** All new chiral ruthenium hexacoordinates complexes have been characterized by ¹H, ¹³C, ³¹P NMR, IR, mass spectrum,

elementary analysis. 12) &I: 114 NMR **(250 MHz, C7jD6)** *: 1.0* **(m, 2I-O** ; **I.3 (s, 6H)** ; **1.32 (q, J = 14.5 Hz, 4H)** ; **2.04 (s. 6H)** : **2.55 (tn. 2I-l)** ; **2.79**

(dd, Jl = 8.5 Hz. J2 - 13 Hz, 6H) ; **3.25 (t, J = 13 Hz. 6H)** ; **4.15 (m. 2H)** : **6.8-8.0 (m. 2OH. aromatics). l3C NMR (62 MHZ, C6D6)** : **25.77** ; **27.2** ; **31.5 (m)** ; **42.5** ; **48.31 (m)** ; **78.8** ; **95.7** ; **107.9** ; **127-140 (aromatics). 31P NMR (100 MHZ, C6D6)** : 36 (ref : **H3PO4** 75%). IR (Nujol) : 1595, 1240 cm⁻¹. $[\alpha]_D$ 25 = +202 (c = 0.43, toluene). m. p. = 204°C (decomposition).

13) 4b : 1H NMR **(250 MHz, C6D6)** : 1.06 **(d. J = 6.5 Hz, 2IQ** ; **1.12 (d. J = 6.5 Hz, 2H)** ; **1.24 (q, J = 2.5 Hz. 6H)** ; **1.61 (d. 1 = 2.5 Hz. 2H)** ; **1.74 (d. J = 2.5 Hz. 2H)** ; **2.15 (s, 6H)** ; **6.8-8.0 (m. 2OH. aromatics). l3C NMR (62 MHZ. Cga)** : **18.4** ; **26.1** ; **40.3 (m)** ; **44.3 (d, J = 28 Hz)** ; **44.7 (d. J = 28 Hz)** ; **45.9** ; **97.1** ; **127-133 (aromatics). 31P NMR (100 MHZ, c6D6)** : **87.6** $(\text{ref}: H_3PO_4 \quad 75\%)$. IR $(Nujol): 1580, 1085, 1015, 760, 720 \text{ cm}^{-1}$. $[\alpha]D^{25} = +60 \quad (\text{c} = 0.2, \text{toluene})$. m. p. = 183°C **(decomposition).**

 $14)$ $\underline{4d}$: ¹H NMR (250 MHz, C₆D₆): 0.35 (s, 2H); 0.96 (d, J = 7 Hz, 2H); 1.21 (d, J = 2.5 Hz, 2H); 2.1 (s, 2H); 2.46 (s, **2H)** ; **6.0-8.0 (m, 32H, aromatics).3lP N?vlR (100 MHz. QD6)** : **422** (ref : **H3PO4 75%).**

 $\alpha \ln^{25} = +280^{\circ}$ (c = 0.3, toluene). m. p. = 230°C (decomposition).