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Abstract : The first general synthesis of mononuclear hexacoordinate chiral ruthenium- 
complexes is presented. Four chiral ruthenium(II)(2-methylallyl)2 complexes containing 
Diop, Chiraphos, Norphos, and Binap were prepared in 50-71% yield under mild 
conditions, and were found to be effective for asymmetric hydrogenation of unsaturated 
carboxylic acids to give the corresponding saturated derivatives attaining 90% optical 
purity. 

During the past twenty years asymmetric synthesis using homogeneous catalysis has become a powerful tool 
in organic chemistry. Catalytic asymmetric hydrogenation by means of a large variety of rhodium complexes 
with chiral ligands such as Diop, Bppm, Chiiphos. etc, has been extensively used to achieve high 
enantioselectivity.~ In contrast, there am relatively few reports on corresponding ruthenium complexes.2 Some 
cluster ruthenium complexes of Diop am known and are effective as catalysts for asymmetric hydrogenation 
under quite drastic conditions.% With the advent of the fiit ruthenium Binap complexes 1 described by 
Ikariya,3 the situation changed, and outstanding performance of various Binap-ruthenium complexes 2.3 
have been &scribed by Noyori and Saburi for reduction of carbon-carbon double-bond&5 and carbonyl 
groups.6 However, the synthesis of ruthenium mononuclear catalyst from polymeric(RuCl2(COD))n as 
starting material requires the presence of triethylamine and is executed in toluene at reflux,3~4 to cleave the 
halogeno- bridged structure. The development of ruthenium-chemistry for homogeneous asymmetric synthesis 
requites mild and reliable synthesis of chiral ruthenium catalysts. 
In this note we wish to report a convenient and general synthetic method for the preparation of new family of 
chiral bidentate phosphine ruthenium bis-ally1 complexes of type 4 which were also found to catalyze 
asymmetric hydrogenation of olelins. 
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RuaCl, (-)BINAPs, NEQ 
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(BINAP)RuXI 

p: x = Cl, Br, I 
a : X = OAc 
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Allylic Grignard reagents are known to react with polymeric, h~ogen~~dg~ complexes such as 
(RuX2diene)n with formation of monondear ruthenium complexes of type ~u(A~)2~e) (All = Ally1 or 2- 
metbylallyl).a We found that Ru(Z-methylallyl)2cOD s was an excellent starting material for a facile synthesis 
of a wide range of bidentate chiral phosphine complexes 3.9 These complexes can be prepared by simple 
displacement of 1%cyclooctadiene ( COD) of 5 by the appropriate chii ligand as shown in Table I. These 
catalysts are also convenient precursors for the preparation of the corresponding chiral ruthenium acetate and 
bromide complexes. *o 

Table I : Preparation of catalysts Q#&-m by ~spiacemeut of cyclooctadiene 

f;\ 
Ph,P PPhz 

* 4 

Entry Ligand Yield 

‘&’ 

71 Q&W)‘* 

51 

&It)-o-(_)NORPEiOS 

(S)+)BlNAP 

u) Under argon a mixture of CUDRtt&tethylallyl~~ iO.Ig. 0.314 mm00 and the appropriate chin+ &and (1 equi~1 in &w.wd 
hexme [Z I&) was heated at 506091: for 5 h. The restdting colortd crystake complex &!a-& wts collected ~~l~~* 
~~d~h~2~)~t~~~~d~~. 
b) {-) Binup was heated with 2 mL of hexme-toluene nrirnvc iSl3j. Afer Rh at 60-7D’y3, the clear sAtian was evaporated au&r 
raiucedpremue,and the result@ solid wm whed with hexane (2 ml,) and dried in wctw. 



Ruthenium catalysts 

These new chiral ruthenium complexes were found to catalyze hydrogenation, and in this preliminary study 
tiglic acid 6 was hydrogenated in quantitative yield into satumted acid The results are summarized in Table II. 

(i I) Reaction was executed with stirm’ng in a st(l’nle;s steel auoclavc in m&arwl solution (2-3 ml) of the substrate (1 mmol) with 
exclusion of air during 24-60 h. b) Determined by ‘H NMR. c) cc were detennbud by H.PL.C. a~lysis of the ami& prepared by 
con&nsadon of R-l -(I-nqhthylethylamine) and the saturated acid. 

Enay Ligand Press remp. lie@ 

NW eo (96) 

e& 

1 w-D4 50 20 100 46 

2 (-)_fiop 15 20 100 46 

3 (-)-Diop 3 20 100 51 

4 (-mop 50 O-5 100 51 

5 (-Pm 15 50 100 38 

6 (-)-Chiiphos 15 20 100 30 

7 (+)-Norphos 3 20 100 4 

8 (+)-Binap 3 20 100 90 

h 1 

Table II : Hydrogenation of Tiglic Acid (41a 

conf. 
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A systematic study revealed that the degree of enantioselection is only slightly dependant upon hydrogen 
pressure. The reaction of &_in methanol using Ru-Diop as a catalyst at initial hydrogen pressure of 50,15 and 
3 atm. gave the saturated acid in 46 and 51% ee respectively (entries l-3). The level of asymmetric induction 
increased by decreasing reaction temperature. Thus using Ru-Diop as a catalyst the reduction of tiglic acid 5 
gave an enantiomeric excess reaching 51% at 0-F’C! under 50 atm but only 46% at 20°C. (compare entries 1 
and 4). 
The present study reveals a direct comparison in the efficiency of different optically active chelating 
biphosphanes ruthenium-ally1 hexacoordinate complexes. These complexes are slightly more efficient (2-3 
atm.) than the corresponding Ru(Il)-acetate. 
Ru@)-Norphos gave poor enantioselectivity (4% : entry 7), with Ru-Chiraphos the formation of saturated acid 
is observed with 30% ee (entry 6). The ruthenium complex 9a possessing Diop ligand proved to be efficient 
and rather high enantiomeric excess up to 51% ee is obtained (entry 4), when tiglic acid is the substrate. 
Noteworthy with the Ru(II)-(Zmethylallyl)2 complex bearing Binap ligand a very high enantioselectivity is 
observed up to 90% ee (entry 8). 
In conclusion, new chiral Ru(II) complexes with ally1 ligand are easy prepared. These complexes have good 
activity (2-3 atm) as catalysts for asymmetric hydrogenation with high enantioface discriminating activity (up to 
90%). 
Out of this work, a systematic study is now possible with ruthenium complexes bearing a large variety of 
chiral ligands as in the case of rhodium and iridium, which is under active investigation in this laboratory. 
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